SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES
Taylor Series of a function f at $x = a$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k
$$

It is a Power Series centered at a.

Maclaurin Series of a function f is a Taylor Series at $x = 0$.
BASIC MACLAURIN SERIES

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{x^k}{k!} \]

\[\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k + 1)!} \]

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \]

\[(1 + x)^p = 1 + px + \frac{p(p-1)}{2!} x^2 + \cdots \]
USE TAYLOR SERIES

1. To estimate values of functions on an interval.
2. To compute limits of functions.
3. To approximate integrals.
4. To study properties of the function in question.
FINDING TAYLOR SERIES

To find Taylor series of functions, we may:

1. Use substitution.
2. Differentiate known series term by term.
3. Integrate known series term by term.
4. Add, divide, and multiply known series.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series
OVERVIEW OF PROBLEMS

Find the Maclaurin Series of the following functions.

<table>
<thead>
<tr>
<th></th>
<th>(\sin(x^2))</th>
<th>(\frac{\sin(x)}{x})</th>
<th>(\arctan(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\cos^2(x))</th>
<th>(x^2e^x)</th>
<th>(\sqrt{1 - x^3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\sinh(x))</th>
<th>(\frac{e^x}{1-x})</th>
<th>(x^2 \arctan(x^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series
OVERVIEW OF PROBLEMS

Find the Taylor Series of the following functions at the given value of \(a \).

10. \(x - x^3 \) at \(a = -2 \)

11. \(\frac{1}{x} \) at \(a = 2 \)

12. \(e^{-2x} \) at \(a = 1/2 \)

13. \(\sin(x) \) at \(a = \pi/4 \)

14. \(10^x \) at \(a = 1 \)

15. \(\ln(1 + x) \) at \(a = -2 \)
Find the Maclaurin Series of the following functions.
Problem 1

\[f(x) = \sin(x^2) \]

Solution

Substitute \(x \) by \(x^2 \) in the Maclaurin Series of sine.

Hence

\[
\sin(x^2) = \sum_{k=0}^{\infty} (-1)^k \frac{(x^2)^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{4k+2}}{(2k+1)!}
\]
MACLAURIN SERIES

Problem 2

\[f(x) = \frac{\sin(x)}{x} \]

Solution

Divide the Maclaurin Series of sine by \(x\). Hence,

\[
\frac{\sin(x)}{x} = \frac{1}{x} \sum_{k=0}^{\infty} \left(-1\right)^k \frac{x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \left(-1\right)^k \frac{x^{2k}}{(2k+1)!}
\]
Problem 3 \[f(x) = \arctan(x) \]

Solution

Observe that \[f'(x) = \frac{1}{1 + x^2} \]. To find the Maclaurin Series of \(f'(x) \), substitute \(-x^2\) for \(x \) in Basic Power Series formula.
Hence $f'(x) = \frac{1}{1 + x^2} = \sum_{k=0}^{\infty} (-x^2)^k = \sum_{k=0}^{\infty} (-1)^k x^{2k}$.

By integrating both sides, we obtain

$$f(x) = \int \left(\sum_{k=0}^{\infty} (-1)^k x^{2k} \right) \, dx = \sum_{k=0}^{\infty} (-1)^k \int x^{2k} \, dx$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} + C.$$
0 is in the interval of convergence. Therefore we can insert $x = 0$ to find that the integration constant $c = 0$. Hence the Maclaurin series of $\arctan(x)$ is

$$\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k + 1}.$$
MACLAURIN SERIES

Problem 4 \[f(x) = \cos^2 x \]

Solution

By the trigonometric identity,
\[\cos^2 x = \frac{1 + \cos(2x)}{2}. \]

Therefore we start with the Maclaurin Series of cosine.
MACLAURIN SERIES

Solution (cont’d)

Substitute x by $2x$ in
$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}.$$

Thus
$$\cos(2x) = \sum_{k=0}^{\infty} (-1)^k \frac{(2x)^{2k}}{(2k)!}.$$

After adding 1 and dividing by 2, we obtain
MACLAURIN SERIES

Solution (cont’d)

\[
\cos^2(x) = \frac{1}{2} \left(1 + \sum_{k=0}^{\infty} (-1)^k \frac{(2x)^{2k}}{(2k)!}\right)
\]

\[
= \frac{1}{2} \left(1 + 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \cdots\right)
\]

\[
= 1 + \sum_{k=1}^{\infty} (-1)^k \frac{2^{2k-1}}{(2k)!} x^{2k}
\]
Problem 5 \[f(x) = x^2 e^x \]

Solution

Multiply the Maclaurin Series of \(e^x \) by \(x^2 \).

Hence, \(x^2 e^x = x^2 \sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{x^{k+2}}{k!} \).
Problem 6 \[f(x) = \sqrt{1 - x^3} \]

Solution

By rewriting \(f(x) = \left(1 + (-x^3)\right)^{1/2} \). By substituting \(x \) by \(-x^3\) in the binomial formula with \(p = 1/2 \) we obtain,

\[
\sqrt{1 - x^3} = 1 - \frac{1}{2} x^3 - \frac{1}{8} x^6 - \ldots
\]
Problem 7 \[f(x) = \sinh(x) \]

Solution

By rewriting \[f(x) = \frac{e^x - e^{-x}}{2} \]. Substitute \(x \) by \(-x \) in the Maclaurin Series of \(e^x = 1 + x + \frac{x^2}{2} + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{k!} \).
Solution (cont’d)

\[e^{-x} = \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} = 1 - x + \frac{x^2}{2!} - \ldots \]

Thus when we add \(e^x \) and \(e^{-x} \), the terms with odd power are canceled and the terms with even power are doubled. After dividing by 2, we obtain

\[\sinh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \]
Problem 8: \[f(x) = \frac{e^x}{1 - x} \]

Solution:

We have \(e^x = 1 + x + \frac{x^2}{2!} + \ldots \) and \(\frac{1}{1 - x} = 1 + x + x^2 + \ldots \)

To find the Maclaurin Series of \(f(x) \), we multiply these series and group the terms with the same degree.
MACLAURIN SERIES

Solution (cont’d)

\[
\left(1 + x + \frac{x^2}{2!} + \ldots\right) \times \left(1 + x + x^2 + \ldots\right)
\]

\[
= 1 + 2x + \left(1 + 1 + \frac{1}{2!}\right)x^2 + \text{higher degree terms}
\]

\[
= 1 + 2x + \frac{5}{2}x^2 + \text{higher degree terms}
\]
Problem 9 \(f(x) = x^2 \arctan(x^3) \)

Solution

We have calculated the Maclaurin Series of \(\arctan(x) \)

\[
\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k + 1}.
\]

Substituting \(x \) by \(x^3 \) in the above formula, we obtain
Solution (cont’d)

\[
\arctan(x^3) = \sum_{k=0}^{\infty} (-1)^k \frac{(x^3)^{2k+1}}{2k+1} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{6k+3}}{2k+1}.
\]

Multiplying by \(x^2\) gives the desired Maclaurin Series

\[
x^2 \arctan(x^3) = x^2 \sum_{k=0}^{\infty} (-1)^k \frac{x^{6k+3}}{2k+1} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{6k+4}}{2k+1}.
\]
Find the Taylor Series of the following functions at given a.
Problem 10 \[f(x) = x - x^3 \text{ at } a = -2 \]

Solution

Taylor Series of \(f(x) = x - x^3 \text{ at } a = -2 \) is of the form

\[
f(-2) + f^{(1)}(-2)(x + 2) + \frac{f^{(2)}(-2)}{2!}(x + 2)^2 + \frac{f^{(3)}(-2)}{3!}(x + 2)^3 + \frac{f^{(4)}(-2)}{4!}(x + 2)^4 + \ldots
\]
Solution (cont’d)

Since f is a polynomial function of degree 3, its derivatives of order higher than 3 is 0. Thus Taylor Series is of the form

$$f(-2) + f^{(1)}(-2)(x + 2) + \frac{f^{(2)}(-2)}{2!}(x + 2)^2 + \frac{f^{(3)}(-2)}{3!}(x + 2)^3$$
TAYLOR SERIES

Solution (cont’d)

By direct computation,
\[f(-2) = 6, \quad f^{(1)}(-2) = -11, \quad f^{(2)}(-2) = 12, \quad f^{(3)}(-2) = -6 \]

So the Taylor Series of \(x - x^3 \) at \(a = -2 \) is
\[
6 - 11(x + 2) + 6(x + 2)^2 - (x + 2)^3
\]
TAYLOR SERIES

Problem 11

\[f(x) = \frac{1}{x} \text{ at } a = 2 \]

Solution

Taylor Series of \(f(x) = 1/x \) at \(a = 2 \) is of the form

\[\sum_{k=0}^{\infty} \frac{f^{(k)}(2)}{k!} (x - 2)^k \].

We need to find the general expression of the \(k^{th} \) derivative of \(1/x \).
Solution (cont'd)

We derive $1/x$ until a pattern is found.

$f(x) = 1/x = x^{-1}$, $f^{(1)}(x) = (-1)x^{-2}$

$f^{(2)}(x) = (-1)(-2)x^{-3}$, $f^{(3)}(x) = (-1)(-2)(-3)x^{-4}$

In general, $f^{(k)}(x) = (-1)^k k!x^{-(k+1)}$. Therefore

$f^{(k)}(2) = (-1)^k k!2^{-(k+1)}$.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series
Solution (cont’d)

After inserting the general expression of the k^{th} derivative evaluated at 2 we obtain,

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(2)}{k!}(x-2)^k = \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^k k! 2^{-(k+1)}(x-2)^k$$

Hence, the the Taylor Series of $\frac{1}{x}$ is

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^{(k+1)}}(x-2)^k.$$
Problem 12 \hspace{1cm} f(x) = e^{-2x} \text{ at } a = \frac{1}{2}

Solution

Taylor Series of \(f(x) = e^{-2x} \) at \(a = \frac{1}{2} \) is of the form

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(1/2)}{k!} \left(x - \frac{1}{2}\right)^k
\]

We need to find the general expression of the \(k^{th} \) derivative of \(e^{-2x} \).
Solution (cont’d)

We derive e^{-2x} until a pattern is found.

$$f(x) = e^{-2x}, \quad f^{(1)}(x) = -2e^{-2x}, \quad f^{(2)}(x) = -2 - 2e^{-2x}$$

In general, $f^{(k)}(x) = (-1)^k 2^k e^{-2x}$.

Therefore $f^{(k)}\left(\frac{1}{2}\right) = (-1)^k 2^k e^{-2 \times \frac{1}{2}} = \frac{(-1)^k 2^k}{e}$.
Solution (cont’d)

After inserting the general expression of the k^{th} derivative evaluated at $1/2$ we obtain,

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(1/2)}{k!} \left(x - \frac{1}{2} \right)^k = \sum_{k=0}^{\infty} \frac{1}{k!} \frac{(-1)^k 2^k}{e} \left(x - \frac{1}{2} \right)^k
$$

Hence, the the Taylor Series of e^{-2x} is

$$
\sum_{k=0}^{\infty} \frac{(-1)^k}{e \times (k!)^2} (2x - 1)^k.
$$
Problem 13

\[f(x) = \sin(x) \] at \(a = \pi/4 \)

Solution

Taylor Series of \(f(x) = \sin(x) \) at \(a = \pi/4 \) is of the form

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(\pi/4)}{k!} \left(x - \frac{\pi}{4} \right)^k
\].

We need to find the general expression of the \(k^{th} \) derivative of \(\sin(x) \).
We derive $\sin(x)$ until a pattern is found.

$f(x) = \sin(x)$, $f^{(1)}(x) = \cos(x)$, $f^{(2)}(x) = -\sin(x)$

In general, $f^{(k)}(x) = \begin{cases}
\sin(x) & \text{if } k = 4n \\
\cos(x) & \text{if } k = 4n + 1 \\
-\sin(x) & \text{if } k = 4n + 2 \\
-\cos(x) & \text{if } k = 4n + 3
\end{cases}$
In other words, even order derivatives are either $\sin(x)$ or $-\sin(x)$ and odd order derivatives are either $\cos(x)$ or $-\cos(x)$. So the Taylor Series at $a = \pi/4$ can be written as

$$\sum_{k=0}^{\infty} (-1)^k \frac{\sin(\pi/4)}{(2k)!} \left(x - \frac{\pi}{4}\right)^{2k} + \sum_{k=0}^{\infty} (-1)^k \frac{\cos(\pi/4)}{(2k+1)!} \left(x - \frac{\pi}{4}\right)^{2k+1}$$
Solution (cont’d)

Since, at $a = \pi/4$, $\sin(\pi/4) = \cos(\pi/4) = 1/\sqrt{2}$, the Taylor Series can be simplified to

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{2} (2k)!} \left(x - \frac{\pi}{4} \right)^{2k} + \sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{2} (2k+1)!} \left(x - \frac{\pi}{4} \right)^{2k+1}.$$
Problem 14 \quad f(x) = 10^x \text{ at } a = 1

Solution

Taylor Series of $f(x) = 10^x$ at $a = 1$ is of the form

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x - 1)^k.$$ We need to find the general expression of the k^{th} derivative of 10^x.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series
We derive 10^x until a pattern is found.

\[f(x) = 10^x, \quad f^{(1)}(x) = \ln(10) \times 10^x, \quad f^{(2)}(x) = \ln^2(10)10^x \]

In general, \(f^{(k)}(x) = \ln^k(10)10^x \).

Therefore \(f^{(k)}(1) = \ln^k(10)10 \).
Solution (cont’d)

After inserting the general expression of the k^{th} derivative evaluated at 1 we obtain,

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x - 1)^k = \sum_{k=0}^{\infty} \frac{\ln^k(10)10}{k!} (x - 1)^k$$
Problem 15 \[f(x) = \ln(1 + x) \text{ at } a = -2 \]

Solution

Taylor Series of \(f(x) = \ln(1 + x) \) at \(a = -2 \) is of the form \(\sum_{k=0}^{\infty} \frac{f^{(k)}(-2)}{k!} (x + 2)^k \). We need to find the general expression of the \(k^{\text{th}} \) derivative of \(\ln(1 + x) \).
Solution (cont’d)

We derive \(\ln(x + 1) \) until a pattern is found.

\[
f(x) = \ln(x + 1), \quad f^{(1)}(x) = \frac{1}{x + 1}, \quad f^{(2)}(x) = -\frac{1}{(x + 1)^2}
\]

In general, \(f^{(k)}(x) = \frac{(-1)^k}{(x + 1)^k} \). Therefore \(f^{(k)}(-2) = 1 \).
Solution (cont’d)

After inserting the general expression of the k^{th} derivative evaluated at -2 we obtain

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(-2)}{k!} (x + 2)^k = \sum_{k=0}^{\infty} \frac{1}{k!} (x + 2)^k.$$